Stretchable, Transparent, Ionic Conductors
نویسندگان
چکیده
منابع مشابه
Stretchable, transparent, ionic conductors.
Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz ...
متن کاملA Transparent, Self-Healing, Highly Stretchable Ionic Conductor.
Self-healing materials can repair damage caused by mechanical wear, thereby extending lifetime of devices. A transparent, self-healing, highly stretchable ionic conductor is presented that autonomously heals after experiencing severe mechanical damage. The design of this self-healing polymer uses ion-dipole interactions as the dynamic motif. The unique properties of this material when used to e...
متن کاملStretchable and Transparent Hydrogels as Soft Conductors for Dielectric Elastomer Actuators
A soft ionic conductor can serve as an artificial nerve in an artificial muscle. A polyacrylamide hydrogel is synthesized containing a hygroscopic salt, lithium chloride. Two layers of the hydrogel are used as ionic conductors to sandwich a dielectric elastomer and fabricate a highly stretchable and transparent actuator. When the two layers of the hydrogels are subject to a voltage, the actuato...
متن کاملHighly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers.
Large deformation of soft materials is harnessed to provide functions in the nascent field of soft machines. This paper describes a new class of systems enabled by highly stretchable, transparent, stable ionogels. We synthesize an ionogel by polymerizing acrylic acid in ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([C2mim][EtSO4]). The ionogel exhibits desired attributes of adequate co...
متن کاملPlasmonic graphene transparent conductors.
Plasmonic graphene is fabricated using thermally assisted self-assembly of silver nanoparticles on graphene. The localized surface-plasmonic effect is demonstrated with the resonance frequency shifting from 446 to 495 nm when the lateral dimension of the Ag nanoparticles increases from about 50 to 150 nm. Finite-difference time-domain simulations are employed to confirm the experimentally obser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2013
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.1240228